会员注册 | 二级域名申请 | 我能做什么? | 网站说明书 | 协议书下载 | 广告预定 | 企业邮局 | 标准库 | 关于我们 |
|
技术交流首页 | 登录 | 用户注册 | 今日新帖 | 搜索 | 我的收藏夹 | 插件: 万年历 | 杭州公交线路查询 |
您当前的位置: 深冷技术网 → 技术交流 --> PSA技术交流区 --> 帖子:“山东石化公司5000Nm3/h 制氢装置PSA氢提纯单元操作手册” |
![]() |
帖子主题:山东石化公司5000Nm3/h 制氢装置PSA氢提纯单元操作手册 |
|
|||||||||||||||||||
第二章工艺过程说明
第一节 吸附工艺原理1.1基本原理吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。 具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。 吸附按其性质的不同可分为四大类,即:化学吸着、活性吸附、毛细管凝缩、物理吸附。 化学吸附是指吸附剂与吸附质间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。其吸附过程一般进行的很慢,且解吸过程非常困难。 活性吸附是指吸附剂与吸附质间生成有表面络合物的吸附过程。其解吸过程一般也较困难。 毛细管凝缩是指固体吸附剂在吸附蒸气时,在吸附剂孔隙内发生的凝结现象。一般需加热才能完全再生。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(即范德华力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的平衡在瞬间即可完成,并且这种吸附是完全可逆的。PSA制氢装置中的吸附主要为物理吸附。 1.2吸附剂及吸附力工业PSA制氢装置所用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 1).AS吸附剂 在大型PSA氢提纯中的应用结果表明:我公司的AS吸附剂对H2O均有很高的吸附能力,同时再生非常容易,并且该吸附剂还具有很高的强度和稳定性,因而适合于装填在吸附塔的底部脱除水分和保护上层吸附剂。 2).HXSI-01吸附剂 本装置所用PSA专用硅胶属于一种高空隙率的无定型二氧化硅,化学特性为惰性,无毒、无腐蚀性.其中规格为Φ1-3球状的硅胶装于吸附塔中下部,用于吸附水分和CO2。 3).HXBC-15B吸附剂 本装置所用活性炭是以煤为原料,经特别的化学和热处理得到的孔隙特别发达的专用活性炭。属于耐水型无极性吸附剂,对原料气中几乎所有的有机化合物都有良好的亲和力。本装置所用活性炭规格为Φ1.5条状,装填于吸附塔中部主要用于脱除CO2组分。 4).HX-CO专用吸附剂 本装置所用的HX-CO专用吸附剂是一种以活性碳为载体的对CO有良好吸附和解吸能力的吸附剂,装填于吸附塔的上部,用于脱除CO2和CO。 5).HX 本装置所用的分子筛为一种具有立方体骨架结构的硅铝酸盐,规格为Φ2-3球状,无毒,无腐蚀性。HX 几乎所有的吸附剂都是吸水的,特别是HX 对于废弃的吸附剂,一般采用深埋或回收处理。但应注意:在卸取吸附剂时,必须先用氮气进行置换以确保塔内无有毒或爆炸性气体。在正常使用情况下,PSA工段的吸附剂一般是和装置同寿命的。 在物理吸附中,各种吸附剂对气体分子之所以有吸附能力是由于处于气、固相分界面上的气体分子的特殊形态。一般来说,只处于气相中的气体分子所受的来自各方向的分子吸引力是相同的,气体分子处于自由运动状态;而当气体分子运动到气、固相分界面时(即撞击到吸附剂表面时),气体分子将同时受到固相、和气相中分子的引力,其中来自固相分子的引力更大,当气体分子的分子动能不足以克服这种分子引力时,气体分子就会被吸附在固体吸附剂的表面。被吸附在固体吸附剂表面的气体分子又被称为吸附相,其分子密度远大于气相,一般可接近于液态的密度。 固体吸附剂表面分子对吸附相中气体分子的吸引力可由以下的公式来描述: 分子引力F=C1/rm-C2/rn (m>n) 其中:C1表示引力常数,与分子的大小、结构有关 C2表示电磁力常数,主要与分子的极性和瞬时偶极矩有关 r表示分子间距离 因而对于不同的气体组分,由于其分子的大小、结构、极性等性质各不相同,吸附剂对其吸附的能力和吸附容量也就各不相同。PSA制氢装置所利用的就是吸附剂的这一特性。由于吸附剂对混合气体中的氢组分吸附能力很弱,而对其它组分吸附能力较强,因而通过装有不同吸附剂的混合吸附床层,就可将各种杂质吸附下来,得到提纯的氢气。 下图为不同组分在分子筛上的吸附强弱顺序示意图 组分 吸附能力 氢气 ☆ 氧气 ☆☆ 氩气 ☆☆ 氮气 ☆☆☆ 一氧化碳 ☆☆☆ 甲烷 ☆☆☆☆ 二氧化碳 ☆☆☆☆☆☆ 乙烷 ☆☆☆☆☆☆ 乙烯 ☆☆☆☆☆☆☆ 丙烷 ☆☆☆☆☆☆☆ 异丁烷 ☆☆☆☆☆☆☆☆ 丙烯 ☆☆☆☆☆☆☆☆ 戊烷 ☆☆☆☆☆☆☆☆ 丁烯 ☆☆☆☆☆☆☆☆☆ 硫化氢 ☆☆☆☆☆☆☆☆☆☆ 硫醇 ☆☆☆☆☆☆☆☆☆☆ 戊烯 ☆☆☆☆☆☆☆☆☆☆☆ 苯 ☆☆☆☆☆☆☆☆☆☆☆☆ 甲苯 ☆☆☆☆☆☆☆☆☆☆☆☆ 乙基苯 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 苯乙烯 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 水 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 强 1.3吸附平衡吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程。 在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中;同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相的分子数和离开吸附相的分子数相等时,吸附过程就达到了平衡。对于物理吸附而言,动态吸附平衡很快就能完成,并且在一定的温度和压力下,对于相同的吸附剂和吸附质,平衡吸附量是一个定值。 由于压力越高单位时间内撞击到吸附剂表面的气体分子数越多,因而压力越高平衡吸附容量也就越大;由于温度越高气体分子的动能越大,能被吸附剂表面分子引力束缚的分子就越少,因而温度越高平衡吸附容量也就越小。 通常用不同温度下的吸附等温线来描述这一关系,如下图: T2 T1 ⊿Qtp 变压吸附 变温吸附 温度 T2>T1 ⊿Qp 吸 附 量 ⊿Qt 组分分压
从上图的B→A和C→D可以看出:在温度一定时,随着压力的升高吸附容量逐渐增大;从上图的B→C和A→D可以看出:在压力一定时,随着温度的升高吸附容量逐渐减小。 本制氢装置的工作原理利用的是上图中吸附剂在A-B段的特性来实现气体的吸附与解吸的。吸附剂在常温高压(即A点)下大量吸附原料气中除氢以外的杂质组分,然后降低压力(到B点)使各种杂质得以解吸。 1.4工业吸附分离流程及其相关参数在实际工业应用中,吸附分离一般分为变压吸附和变温吸附两大类。从吸附剂的吸附等温线可以看出,吸附剂在高压下对杂质的吸附容量大,低压下吸附容量小。同时从吸附剂的吸附等压线我们也可以看到,在同一压力下吸附剂在低温下吸附容量大,高温下吸附容量小。利用吸附剂的前一性质进行的吸附分离称为变压吸附(PSA),利用吸附剂的后一性质进行的吸附分离就称为变温吸附(TSA)。 在实际工业应用中一般依据气源的组成、压力及产品要求的不同来选择TSA、PSA或TSA+PSA工艺。 变温吸附工艺由于需要升温,因而循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的净化;变压吸附工艺的循环周期短,吸附剂利用率高,吸附剂用量相对较少,不需要外加换热设备,被广泛用于大气量多组分气体的分离与纯化。 本装置的流程为PSA流程。 在工业变压吸附(PSA)工艺中,吸附剂通常都是在常温和较高压力下,将混合气体中的易吸附组分吸附,不易吸附的组分从床层的一端流出,然后降低吸附剂床层的压力,使被吸附的组分脱附出来,从床层的另一端排出,从而实现了气体的分离与净化,同时也使吸附剂得到了再生。 但在通常的PSA工艺中,吸附床层压力即使降至常压,被吸附的杂质也不能完全解吸,这时可采用两种方法使吸附剂完全再生:一种是用产品气对床层进行“冲洗”以降低被吸附杂质的分压,将较难解吸的杂质置换出来,其优点是常压下即可完成,但缺点是会多损失部分产品气;另一种是利用抽真空的办法进行再生,使较难解吸的杂质在负压下强行解吸下来,这就是通常所说的真空变压吸附(Vacuum Pressure Swing Adsorption,缩写为VPSA或VSA)。VPSA工艺的优点是再生效果好,产品收率高,但缺点是需要增加真空泵,装置能耗相对较高。在实际应用过程中,究竟采用以上何种工艺,主要视原料气的组成条件、流量、产品纯度及收率要求以及工厂的资金和场地等情况而决定。 本装置采用冲洗方式对吸附剂进行再生。 原料气组成: 吸附塔的处理能力与原料气组成的关系很大。原料气中氢含量越高时,吸附塔的处理能力越大;原料气杂质含量(对本装置而言主要是CO)越高,特别是净化要求高的有害杂质含量越高时,吸附塔的处理能力越小。 原料气温度: 原料气温度越高,吸附剂的吸附量越小,吸附塔的处理能力越低。 吸附压力: 原料气的压力越高,吸附剂的吸附量越大,吸附塔的处理能力越高。 解吸压力: 解吸压力越低,吸附剂再生越彻底,吸附剂的动态吸附量越大,吸附塔的处理能力越高。 产品纯度: 产品纯度越高,吸附剂的有效利用率就越低,吸附塔的处理能力越低。
由于PSA装置的氢气损失来源于吸附剂的再生阶段,因而吸附塔的处理能力越高,则再生的周期就可以越长,单位时间内的再生次数就越少,氢气损失就越少,氢回收率就越高。 不同工艺流程下的氢气回收率: 在不同的工艺流程下,所能实现的均压次数不同,吸附剂再生时的压力降也就不同,而吸附剂再生时损失的氢气量随再生压力降的增大而增大。一般来讲,PSA流程的均压次数越多,再生压力降越小,氢气回收率越高。但从另一方面考虑,均压次数如果过多,容易将部分杂质带入下一吸附塔并在吸附塔顶部形成二次吸附,从而使该塔在转入吸附时因顶部被吸附的杂质随氢气带出而影响产品氢纯度。 对于冲洗流程和真空流程来讲,冲洗流程需消耗一定量氢气用于吸附剂再生,而真空流程则是通过抽真空降低被吸附组分的分压使吸附剂得到再生,故采用冲洗流程时,氢气回收率较低,但真空流程能耗较高。 产品氢纯度与氢回收率的关系: 在原料气处理量不变的情况下,产品氢纯度越高,穿透进入产品氢中的杂质量越少,吸附剂利用率越低,每次再生时从吸附剂死空间中排出的氢气量越大,氢气回收率越低。 吸附压力对氢气回收率的影响: 在一定的范围内,吸附压力越高,吸附剂对各种杂质的动态吸附量越大。在原料气处理量和产品氢纯度不变的情况下,吸附循环周期越长,单位时间内解吸次数越少,氢气回收率越高。 冲洗过程对氢气回收率的影响: 由于被吸附的大量杂质是通过用部分氢气的回流冲洗而解吸,故冲洗时间的长短、冲洗气量的大小、冲洗速度的快慢都将影响氢气的回收率。一般来讲,冲洗时间越长,冲洗过程越均匀,冲洗气量越大,吸附剂的再生越彻底,在纯度不变的情况下,吸附时间越长,氢气回收率越高。但是,由于本装置的冲洗气来自均压结束后的顺放过程,如需加大冲洗气量,则顺放过程压力降太大,将会引起部分杂质穿透,反而不利于冲洗。 吸附时间(或吸附循环周期)对氢气回收率的影响: 在原料气流量和其他工艺参数不变的条件下,延长吸附时间就意味着单位时间内的再生次数减少,再生过程损失的氢气也就越少,氢气回收率越高。但是,在同样条件下,吸附时间越长,进入吸附剂床层的杂质量越大,因吸附剂动态吸附量不变,故穿透进入产品氢的杂质量将增大,这势必会使产品氢纯度下降。由此可见,吸附时间的改变将同时影响产品氢的纯度和收率。 在PSA制氢装置的实际操作过程中,为了提高PSA装置运行的经济性,我们应在保证产品氢中杂质含量不超标的前提下,尽可能的延长吸附时间以提高氢气回收率。这是PSA装置吸附时间参数设定的基本原则。 综上所述,为了提高氢气回收率进而提高装置的经济效益,在原料气组成、流量以及温度一定的情况下应尽量提高吸附压力、降低解吸压力、延长吸附时间、降低产品纯度(在允许范围内);
原料气流量对纯度的影响: 在气体工艺条件及工艺参数不变的条件下,原料气流量的变化对纯度的影响很大,原料气流量越大,每一循环周期内进入吸附塔的杂质量越大,杂质也就越容易穿透,产品氢纯度越低。相反,原料气流量减小,则有利于提高产品氢纯度。 解吸再生条件对产品氢纯度的影响: 如前所述,在常压冲洗再生的情况下,一方面因要消耗部分产品气用于吸附剂再生,氢气回收率较低;另一方面,因吸附剂再生不彻底,吸附剂动态吸附量较小,因而若原料气流量不变,则产品氢纯度下降。与之相比,采用真空解吸再生时,吸附剂动态吸附量大,吸附剂再生彻底,不仅有利于提高氢气回收率,也提高了产品氢纯度。 均压次数对产品氢纯度的影响: 原料气处理量和吸附循环周期不变,均压次数越多,均压过程的压力降越大,被吸附的杂质也就越容易穿透进入下一吸附塔并在吸附剂床层顶部被吸附,致使该塔在转入下一次吸附时杂质很容易被氢气带出,影响产品氢纯度。
1.5工业吸附分离流程的主要工序吸附工序――在常温、高压下原料气进入吸附床,吸附剂将杂质吸附,获得产品氢气。 减压工序――通过一次或多次的均压降压过程,将床层死空间氢气回收。 顺放工序――通过顺向减压过程获得吸附剂再生的冲洗气源,即用于对其他塔进行吹扫。 逆放工序――逆着吸附方向减压使吸附剂获得部分再生 冲洗(抽真空)工序――用产品氢冲洗(或抽真空)降低杂质分压,使吸附剂完成最终的再生。(本装置采用冲洗再生) 升压工序――通过一次或多次的均压升压和产品气升压过程使吸附塔压力升至吸附压力,为下一次吸附作好准备 本装置主流程的工序包括:吸附、一均降、二均降、三均降、四均降、顺放、逆放、冲洗、四均升、三均升、二均升、一均升、产品氢终升共十三个工艺步序。 |
|
|||
第二节 工艺流程说明2.1流程简述 来自界区外的压力2.5MPa(G)、温度 PSA单元除送出产品氢外,还产生逆放解吸气和冲洗解吸气。逆放解吸气来自于吸附床的逆放步骤,冲洗解吸气产生于冲洗步骤,所有解吸气最后均送解吸气混合罐V-2003。逆放解吸气和真空解吸气在混合罐中混合后送往解吸气压缩机。 吸附塔的工作过程依次如下: 1) 吸附过程 原料气经程控阀XV 2) 均压降压过程 这是在吸附过程完成后,顺着吸附方向将塔内较高压力气体依次放入其它已完成再生的较低压力塔的过程,这一过程不仅是降压过程,而且也回收了吸附床层死空间内的氢气,本装置主流程共包括四次连续均压降压过程,分别称为:一均降(E1D)、二均降(E2D)、三均降(E3D)、四均降(E4D)。一均降通过程控阀XV 3) 顺放过程 均压过程结束后,吸附塔压力仍有0.4MPa左右,而此时的杂质吸附前沿仍未到达床层顶部,故可通过顺放获得冲洗再生气源。顺放过程通过XV 4) 逆放过程 这是吸附塔在完成顺放过程后,逆着吸附方向将塔内压力降至0.05MPa的过程,此时被吸附的杂质开始从吸附剂中解吸出来。逆放解吸气经程控阀门XV 5) 冲洗过程 在这一过程中,用来自于顺放气罐V2001的氢气逆着吸附方向对吸附床冲洗,使吸附剂中的杂质得以完全解吸。冲洗通过程控阀XV 逆放和冲洗解吸气于V2003中混合后送出界区去制氢转化炉。 6) 均压升压过程 该过程与均压降压过程相对应。在这一过程中,分别利用其它吸附塔的均压降压气体依次从吸附塔顶部对吸附塔进行升压。本装置主流程共包括四次连续均压升压过程,依次称为:四均升(E4R)、三均升(E3R)、二均升(E2R)和一均升(E1R)。 7) 产品气升压过程 经过四次均压升压过程后,再用产品氢经程控阀XV4709、XV 工艺流程特点: 与传统PSA流程相比,本装置流程具有如下特点: 1) 均压次数多,氢气回收充分,氢气损失小。 2) 冲洗时间连续,冲洗过程和冲洗气流量稳定,吸附剂再生效果好。 3) 特殊的复合床吸附剂装填使本装置能同时适用于脱除变换气中除氢以外的全部杂质。 4) 采用多床同时吸附的PSA流程,吸附循环周期短、吸附剂利用率高。 5) 本装置的自动切塔程序实现了对故障塔的不停车检修。
2.2 工艺步序说明本装置共由8台吸附塔组成,其中2台始终处于吸附状态,其余6台处于再生的不同阶段。吸附塔的整个吸附与再生过程都是通过66台程控阀门按一定的工艺步序和顺序进行开关来实现的。为便于识别这些程控阀门和表述整个工艺过程,我们首先按一定的规律对程控阀进行编号: 01-原料气进口阀 02-产品气出口阀 03-一均、产品气升压阀 04-二均、三均阀 05-冲洗进口阀 06-四均、顺放阀 07-冲洗出口阀 08-逆放阀 09-产品气升压公共阀 10-顺放公共阀 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PSA氢提纯部分的工艺步序和阀门开关状态表:
|