2 -1.67/150型氧压机气水分离瓶爆破简介

1991年9月13日下午2时30分左右,我分厂5号2一1.67/150型氧气压缩机,在正常运转过程中,气水分离瓶突然发生爆破,操作者立即停止设备运转。经检查,位于气水分离瓶的下封头处,爆开一个呈"T"形的裂口,垂直裂口为60mm,环向裂口为100mm,爆破时设备工作压力为10MPa。因附近没有工作人员,未造成重大人员伤亡。

事故发生后,从破口处明显看到瓶內壁 有严重的腐蚀,壁厚有明显的减薄,经测量 断层最薄点仅 3.2 mm,瓶体厚度为 15~17 mm,气水分离瓶内上部 \$\phi28 \times 5 \times 600 mm 的铜管脱落在破口处。

这台 2 —1.67/150型氧气压缩机气水分离瓶, 是1976年 6 月份更新的, 自运转到发

生爆破已使用15年。经过检查分析,我们认为导致气水分离瓶爆破的原因,主要来自以下两个方面:

- 1. 氧气压缩机 在长期使用 过程中,气水分离瓶下部经常处于水浸之中,气瓶内壁造成严重的氧化腐蚀,使壁厚减薄,强度降低,在压力下又受到分水管脱落撞击而产生爆破。
- 2. 通过检测表明,这台 氧气压缩机 气水分离瓶的爆破,还与制造质量有关。

这次事故,性质严重,教训深刻,也望同行引以为戒。事故后,我们采取加强管理,派专人负责受压容器检测,并定期进行水压试验、测厚及强度计算,以确保安全使用。

(沈阳标准件厂制氧分厂 于德志)

十三家重点钢铁企业制氧机装备概况

据《动力网讯》1991年第2期报道,1990年9月对全国13家重点钢铁企业的制氧机装备作了一次调查。以各公司1990年制氧机现有装备水平(个别单位含在建制氧机如鞍钢2*35000m³/h等),与1989年实际完成钢产量比较,折算为每百吨钢所具有的每小时制氧能力。现列表如下,供同行们参考。

项目	武钢	攀钢	首钢	鞍钢	宝钢	太钢	本钢	重钢	湘钢	酒钢	水钢	马钢	包钢
装备情况(m³/h) 年钢产量(万吨)	106000 450	40000 183	84000 380	122700 785	112000 365	41400 168		25500 80	20000 70		9200 20	26200 200	36550 224
百吨钢具有每小时 制氧能力	2.560	2.186	2.211	1.563	3.068		1.509	2.857	2.857		4.60	1.31	1.632

(杭州制氧机研究所 谭志宣)

西南化工研究院已建立150余套变压吸附分离装置

据西南化工研究院汪林进在《节能》1992年第 3 期报道,西南化工研究院从70年代初开始研究并于 80年代初开发的变压吸附分离技术,至今已先后在国内建立了150余套工业装置并出口国外。开发的装置有,从合成氨弛放气、焦炉煤气、城市煤气以及DMF尾气等中分离回收氢气装置,从半水煤气、德士古炉煤气等中分离回收 CO 装置,从空气中制富氧装置,从煤矿瓦斯气中浓缩甲烷装置,从天然气中脱除 C_2 ⁺ 装置,从合成氨变换气中脱除 CO_2 装置。装置规模为200~10000 m^3/h ,及每小时几万立方米的原料气处理量。

(杭氣研究所 顾福民摘)